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SUMMARY

The paper addresses the finite element method with a-posteriori error

Si estimation for elements of degree p = 1 and p = 2. It gives the formu-

lae for the error indicators and error estimators. Basic mathematical

characterization of the estimators are given and it is shown that the

estimators for p - 1 and p - 2 have different structures. Numerical

examples show the effectivity of the approach and the high quality of the

estimator.



1. INTRODUCTION

During the last few years a significant progress has been achieved

in the theory and the implementation of the adaptive procedures and

a-posteriori error estimation for the finite element method. For the

survey of the today's state of the art of the quality assessment of finite

element solutions we refer to [1]. Adaptive finite element codes FEARS

[2], PLTGM [3], EXPDES [4] were developed. For the theoretical and

implementational aspects related to the mentioned codes we refer to [5] to

[10]. Various approaches for obtaining a-posteriori error estimates were

recently developed. See, for example, [1] - [15] and other references

mentioned in [1].

The codes and the theory mentioned above are for the finite element

method with elements of degree one. In this paper we are addressing the

questions arising from the use of elements of degree two. We will concen-

trate on the comparison between the approaches based on the elements of

degree one and two.
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2. THE MODEL PROBLEM

Let us consider the model problem of the Laplace equation

(2.1.) L(u) = -Au = f on Q c R2

with the boundary conditions

0
(2.2a) u = 0 on a Q

(2.2b) au = t on 3 11an

where n is the outward normal to ag.

The solution u0 of the problem (2.1) (2.2) is understood in the

standard weak sense: u0 E H1(9) = {uJu E H1 (0), u = 0 on 3O0) such

that

(2.3) B(uo,v) = f (VU = f fvdx + f tvds

holds for all v E Hl(Q). By H1 (0) we denote the standard Sobolev

2space. By lulE = B(u,u) we denote the energy norm of function

1
u E H'(0).

Remark. Although we restricted ourself to a very special case (2.1),

(2.2) the theory and conclusions hold for the general elliptic equation on

bounded domains in R2.

We will consider two illustrative model problems.

Problem 1. The domain 0 and the boundary conditions are shown in

Fig. 2.1.

-e.
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(-l(0) (o,) t 2(l)

_0 A
(-1,O) (010) (1,0)

Fig. 2.1. Scheme of Problem 1.

a 0 consists of OA and on 3 10 t is defined so that the exact

solution u 0  is

u -. 0.0700754rA sin 0/2

and

IuoIE - 0.657878 10- 1 .

By (r,8) we denote the polar coordinates.

Problem 2. The (slit) domain 0 and the boundary conditions are

shown in Fig. 2.2.

a 0 consists of upper side OA (marked) and on B1 , t is defined

so that the exact solution u0  is

u0 - 0.0635659r/4 sin 0/4

IuOIE - 0.579a428 x 10-
1

Problem 1 and 2 have obviously solution with different strength of

singularity.

.. . ... .. . . .
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Fig. 2.2. Scheme-o Problem 2.
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3. THE FINITE ELEMENT METHOD

We will consider the finite element method with the bilinear and

biquadratic elements on the meshes which are used in the Program FEARS.

These meshes have regular and irregular nodel points. The values of the

finite element solution in the irregular nodal points is determined by the

requirement that the elements are conforming. Fig. 3.1a,b show the meshes

with 20 elements for the model problem 1 and bilinear and biquadratic ele-

ments. The regular nodel points are marked by ., while the irregular

points are marked by x. We will not introduce here a formal definition

and refer to [2), [6], [7].

We have shown the meshes only for the special case. They are in

general defined for domains with curved boundaries. See [2), [6].

The finite element solution UFE is defined in the standard way.

By e we denote the error of the finite element solution UFE, e =

uFE -

Fig. 3.1a. The regular and irregular nodal points for p 1.
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Fig. 3.lb. The regular arid irregular nodal points tor p - 2.
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4. THE ADAPTIVE FINITE ELEMENT METHOD A-POSTERIORI ERROR

ESTIMATION AND THE QUALITY ASSESSMENT

We will distinguish between the feedback and adaptive finite element

method. A feedback method utilizes the currently available information

for steering tho computational process. The adaptive approach is a feed-

back approach which has clearly defined optimal properties. Hence the

assessment of the quality of a feedback approach is relative to the

criterion of the optimality. We will not go here into details but refer

to [16], [17].

We will say that the feedback is adaptive with respect to the

convergence rate measure if the rate is the same as the theoretically

best one among all the meshes with the same number of degrees of freedom

N and the same degrees of elements p.

For our model problems the feedback approach will be adaptive if the

(asymptotic) rage is O(N-2 ) for the elements of degree p = 1 and is

O(N-1) for the elements of degree p = 2 in both cases, i.e. the rate is

independent of the strength of the singularity. We note that the same

rate is obtained when the solution is smooth.

The quality of the a-posteriori error estimator e is measured by

its effectivity index 0 = c/le1E where lelE is the energy norm of the

error of the finite element solution. In practice we have to require

that 19-11 .2 (say) when the accuracy of uFE is in the range of the

engineering requirement ( 10% say). In addition we prefer that 0 > I

so that the true error is overestimated rather than underestimated. This

is important because the error estimator is used as the stopping

criterion. Obviously if 8 > 2 or 6 < V , then the error estimator is

practically unacceptable.

N
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5. THE ERROR INDICATORS AND ESTIMATORS

The error estimator c is computed through the error indicators

n(A) of the single element A. Then the error estimator (which

approximate le1E) is given by

(5.1) C2 = (A)2

where the sum is taken over all elements.

The error indicators are also used for the steering the feedback

finite element method. We refer to [18] for the detailed analyses of

various steering strategies. The basic strategy is to refine all elements

having the error indicators over the threshold T, for example, T

Y max ri(A) where 0 < Y 1 is a-priori chosen and the maximum is taken

over all elements.

The code FEARS uses basically this type of strategy but more

sophisticated to minimize computer time by avoiding repeated

recomputation. The experience with FEARS shows that the total computer

time is 2-3 times the computer time solving the final mesh only.

We note that error indicators which lead to completely unacceptable

quality of the error estimators can still perform relatively well in

steering the feedback approach.

Let us now define the error indicators for the bilinear and

biquadratic elements. For simplicity of the exposition, we will consider

only an uniform patch of the mesh. The data management of the adaptive

solver is based on the tree structure (see [7]) and mesh is defined in a

recursive way. Hence, every element has a "father" which has four

~ V~*~~Jd ~~ ** . . *'-2-.' ~ - -*%*** .-.
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"sons." Fig. 5.1 shows uniform mesh with element Ai i - 1,2,3,4

belonging to one "father" (AO ) shown also in the figure.

44 A 1 6

A4 a3

1 0 0

A , A1 2 2AA2 A4

IAI

Fig. 5.1. The element and his "father".

A.. Error indicator for the bilinear elements.

We will define the error indicator as used in FEARS but simplified

for the special problem under consideration.

Let

2 0 2 2

(5.2a) i(Al IAI12 (max r (A2))

J.1 ib-1...,4 xi

(5.2b) n2A) _ JAJ2 Ii12
L2 ( a?)

where JAI is the length of the element side, rxi (Aj) is the jump of

the derivative in the x, direction In the vertex Ai of the element

A and
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(5.3a) R A+uiF - p

where p is such that f R dx - 0.

A
0

Now we define i

(5'4) 2(A0) - ri2(A?) + 2A.

It can be proven (see [6]) that n2(A) << ni(a?) and hence it can be

neglected and define

(5.4b) ~ 2 Al 1

Experience with FEARS shows that in fact the use of n and T1

practically does not change the estimator in £6].

Remark 1. If the mesh is uniform and the solution is quadratic, then

the error estimator is exact.

Remark 2. We could use other equivalent estimators, for example,

replace n2 by the integral of the square of the jump of the derivative

of the finite element solution over the boundary of A1  (multiplied by

JI). Obviously i(AP) is the value of this integral computed by a

quadrative. Nevertheless, experience shows that for small accuracy (large

error) the estimator based on the integral tends to underestimate the

error and hence the definition of the indicator nl corrects this

undesirable and enlarges the range of the asymptotic validity of the

situation of the estimator (see also numerical results in section 7).



2 .

B. Error indicator for biquadratic elements

Let us assume that the center of the element lies in the origin.

Define

6 . .L2 L - 1,2

vi  = X16162

(5.5a) G(v1 ) = f (f vi - VUFE Vvi )dx, i 1,2
0
A1

(5.5b) bi = _ 120 1G(vi), - 1,2

2(As G(v,)2
(5.6) nT1A1) - 720 "

Al1 ° 1

(The integrals in (5.5a) are numerically computed.)

2

(5.7) n2(A °) -IAI f(rx )2ds
J.1

where the integral is taken over the sides of the elements perpendicular

to xj and rxj are as before the jump in the derivatives.

(5.8) n2(A °)  A12 IRI2
L 2 (A )

where

R - f + AU

U " uFE + bl1x6 1 + b2x2 62

.9
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and bi are given by (5.5b). Then we define

3

i-1

and c is defined by (5.1).

It can be shown, see [19], that if the solution is sufficiently

smooth, then n2 and n3 can be neglected with respect to n, and hence

we can use the indicator

as in the case for p - 1. Nevertheless, we see a significant difference,

namely that in the case p = 1 the principal part of the indicator is the

"boundary line part" (jumps), while for p - 2 it is the "volume" part.

From the implementational point of view, the "volume" indicator is more

advantageous.

In the case of the smooth solution u0 and reasonable meshes the

indicators for p - 1 and p = 2 are of the same magnitude and the

estimators are of the high quality, namely

lelE = (1 +

where the term e(c) is very small. Nevertheless, if the solution is

unsmooth as in our model problems, then the indicators are of very dif-

ferent magnitude when the elements are adjacent to the origin where the

solution is singular and the error is in these elements strongly under-

estimated. This is especially important in the case p - 2 because the

error indicators in the area where the solution is smooth are much smaller

than for p - 1. This makes the contribution of the largest indicators to

the error estimator much larger.
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The elements which are in the area of the singularity of the solution

are refined during the adaptive mesh construction and are located in the

terminal points of the tree data structure. These elements are quadruples

of the elements belonging to one "father". Fig. 5.2 shows in the left

corner such a quadruple and its "father" and "grandfather".

Fig. 5.2. Scheme of the terminal element.

Hence, we will modify the error indicators in these terminal quadruples in

dependence on the distribution of the error indicators. (This modifica-

tion can be implemented in a very effective way.)
qA

The modified estimators n are constructed from n as follows: the

four indicators of the quadruple of the elements are ordered by the

magnitude. For the sake of the explanation, assume that n2 (A0) z n2(A&)

>2( 0) > 2(A0 )  (see Fig. 5.1).

If n2(A O) _ yn2 (Al) with Y - 8, then

S2(AO) F 2(A O)F(R)

* 21(,&) _ n2(AO), I-2,3,4

- * . . * * -.h .
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and

F(R) = 0.031605R + 1 for 0 K R 234

- 3.4813e3
"762x I0-3R for 234 K R < 1000

= 150 for R > 1000

with R = where AO is the diagonal element to A0. If n2(AO) <

Yn2 (A&) and n2 (AO) > on2 (AO ) with 0 - 100, then

G( A0.0 - G(RI)r 0

^2-,& 1 -  G(R3  2( 00)

2( A) _ n2 0)

n2((A O )  n2( O

where

G(R) 0 n20034)99R + 1 for R K 700te

-3 '

=1. 71320R
1O for 700 R K 4000

=93.541 for 41000 R

and

n2A0 n2A0

R1  0 P(~ R 3
2 0'3 2 0

11 (A14) ri (AP)

(where as before in the denominator is the indicator of the diagonally

opposite element). If r2(AO) < Bn2(A0), then

3,
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=2(A0) n2(A0), i - 1,2,3,4.

The above formulae are characterizing the singularity of a point character

(F(R)) (e.g. of the type occurring in our model problems) or the line

singularity along the element side (G(R)). The formulae were developed by

analyzing theoretically and numerically these cases and their validity was

tested in a set of computations.

S.
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6. SOME BASIC PROPERTIES OF THE ESTIMATORS

Let us mention the essential properties of the estimator. We list

the basic assumptions but not completely accurately because their com-

plexity. We refer to [6] and [19] to precise formulations.

a) The mesh is a K-mesh. Roughly speaking, the mesh is a K-mesh if

there are not too many irregular nodal points between the regular ones.

b) The mesh is nearly equilibrated. This means that the error

indicators are nearly equal (except possibly small number of exceptions).

c) lejE > Chp  where h is the maximal element size. The

conditions (a,b) usually lead to c.

d) The meshes are patchwise uniform. This roughly means that large

pieces of meshes have uniform character.

e) The mesh is such that (roughly speaking) the major part of the

error is in the areas where the solution has no singularity (due to proper

refinement) (usually b leads to this assumption).

Under the above assumptions, the following theorem holds (see [19]).

Theorem 6.1. For any T > 0 and h ho(T), T sufficiently small

le - 11 _ Mr

where the constant M is independent of T.

Theorem 6.1 is valid for p 1 1 and p = 2. Also for not modified

estimator. Nevertheless, MT could be small only for very small h,

i.e. for very high accuracy which is not practically relevant. Hence the

modified estimator is, as we will see, essential for practical computa-

tion.

.5

m
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7. NUMERICAL EXAMPLES

We will illustrate the performance of the feedback finite element

method and the error estimator based on the error indicators introduced in

previous sections. Let us summarize typical behavior one can observe

1) Fig. 7.1 shows the values of the modified error indicators n2 (A)

for Problem 1, biquadratic elements (p=2) and various meshes with M

elements and N degrees of freedom.

All indicators are of the same magnitude (10-8) except the ones

adjoined to the singularity point which are of much larger magnitude

(10-5).

The indicators of the elements which are not refined do not change

significantly by the refinement of other elements.
1

2) The maximal error indicator is decreased by the factor I for
2

problem I (by r2 /2 for problem 2) when the element is refined by

dividing it into four elements. This factor, is directly related to the

strength of the singularity (r, r1/4 ) of the solution. (Note that this

factor is independent of p). For p - 2 and problem I the total error

e is essentially the maximal error indicator until the indicator is of

the order 10-7 which occurs when the smallest element is of order
-1, I so h antd

2 i.e. of the order 1000 and the error lelE is of the magnitude

1% of ulE. Hence the rate is exponential. Fig. 7.2a, respectively

7.2b, shows in the semilogarithmic resp. double logarithmical scale the

behavior of the error lelE. Similar behavior can be observed in the case

of problem 2. See Fig. 7.3a,b. In Fig. 7.2b and 7.3b the slope of the

maximal asymptotic rate N- 1 and N-1  for the elements of degree

* p = I and p = 2 is shown. This rate Is achieved for adaptively

constructed meshes for high accuracies independently of the strength of
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the singularity. We see that for p 1 1 this rate is achieved in the

range of engineering accuracy while for p - 2 the rate is in this range

still exponential and the asymptotic rate N -  is achieved for much

higher accuracies.

3) When the indicator of the element adjoined to the origin will be

of order of the other indicators, then many elements will be refined. The

indicators n2(A) in the area where the solution is smooth will decrease

by the magnitude 26 . 64 for p- 2 and 24 . 16 for p - I. This

refinement is then followed by a series of refinement of the elements

adjoined to the singularity. Fig. 7.2 shows clearly this character for p

1 1. For p - 2 the refinement of many elements did not occur in the

figure.

4) The refinement by the bisection procedure is not an optimal one

for the convergence. Nevertheless, it is very advantageous for the data

treatment. We refer to [20] for the analyses of the optimal refinement in

one dimension.

5) An effective feedback procedure has (especially for p - 2)

anticipated the character of the proper refinement so that the proper mesh

is designed quickly. It is obvious that the refinement character can be

recognized. In the program FEARS this procedure is called a short pass

procedure.

6) The quality of the error estimator is high. Fig. 7.2 shows the

error and the error indicator for p = 2. In Table 7.1 we show typical data

for the meshes with 8-26 elements for Problem 1. We clearly see that the

effectivity index for the nonmodified estimator is unacceptable although it

increases with le1E - 0 (and theoretically converges to 1). On the other

hand, the modified estimator has effectivity index of high quality.



19

7) Comparing performance of the bilinear (p - 1) and biquadratic

mesh, we see that in the presence of a singularity the bilinear elements

perform better for low accuracy while higher accuracy cannot be

practically achieved by bilinear elements. If the solution is smooth,

then the biquadratic elements perform better in larger range of the

accuracy (see also Fig. 7.3ab). The performance of biquadratic elements

could be improved if stronger refinement than based on bisection could be

effectively made.

M:8 N :40

2.18-8 8.12-8 2.23-8 1.26-8

5.71-8 3.01-4 2.66-5 4.62-8

M=14 N =60

1.09-8 4.92-8 4.80-8 1.03-7

2.09-8 4.13-8 1.11-8 7.11-9

5.27_8 4.45-8
3.15-8 5.91-5 1.23-52D9-8

Fig. 7.la. Values of the modified error indicators n2(A) for M - 8,14.

-,,.z,-.-,...,-,'.-....,.,'::...::'... . . : - :: : ' :p 5 . , , ; , .
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M=20 N= 80

1.05-8 4.87-8 4.99-8 1.03-8

1.24-8 2B2-8 2.67- 5.9-9

5.12-8 4.73-8
354-8 1.9-

I.03-82.09-85.68-915.51-9

1.6o-83.o5-1622-6 ID5-8-

DETAIL

Fig. 7.1b. Values of the modified error indicators n2(a) for M = 20.

*,

Wp
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M-=26 N =100

1.04-8 4.86-8 5.04-8 1.03-8

120"- 2.74-8 2.75-8 599-9

5.02-8 - 4.88-8
3.45-8 r A ___-

6.09-9 1.42-8 1.34-8 2.92-9

8.07-9 105-8 2.85-91.77-9
1.79-8 -- - 9.74-9

5.18-9 1.53-5 .15-6 5.28-9

DETAIL

Fig. 7.1c. Values of the modified error indicators n2 (A) for M = 26.

4
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*I I I
30 x True Error p=2

Oo---o Estimator p=2
, "-' True Error p = I=w 20

_w

cr- 10--

6

wW 4 "'-

20 40 60 80 100 120
NUMBER OF DEGREES OF FREEDOM

Fig. 7.2a. Accuracy of the finite element solution of Problem 1 for the
element of degree p = 1,2 (semilog scale).

id
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30

,20 -- x 2 _-- p-
z a-xp

=P 
Io

-6__
5

0 1
2

10 20 40 60 -00 200 400
NUMBER OF DEGREES OF FREEDOM

Fig. 7.2b. Accuracy of the finite element solution of Problem 1 for the
elements of degree p 1 1,2 (log log scale).
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90
_%1700 *- x True Error p = 2 -

o---o Estimator p = 2

"w .. True Error p = I -

~20

100 0 0 0
0100 200 300 400 500

NUMBER OF DEGREES OF FREEDOM

Fig. 7.3a. Accuracy of the finite element solution of Problem 2 for the
elements of degree p - 1,2 (semilog scale).

t

. .-

A A -
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70 -- - x True Error p=2-aII Tu
g 50 -- True Error p= 1 -

w 40

w
S20

0 _

S 8 1 N, x

w 5
4 1 T- II

20 40 60 T00 200 400 600
NUMBER OF DEGREES OF FREEDOM

Fig. 7.3b. Accuracy of the finite element solution of Problem 2 for the
elements of degree p - 1,2 (log log scale).
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8. CONCLUSIONS

We summarize now briefly our conclusions.

a) The error indicators have different structures for even and odd

degree of elements. The even degrees are preferable from the implemen-

tational aspects.

b) The range of asymptotic exactness of the estimator has to be in-

creased by the modification of the indicators in the terminal elements.

The error estimates are then of high quality in the entire range of the

accuracy.

c) Biquadratic elements lead often to an exponential convergence in

the entire range of engineering accuracy.

d) The feedback algorithm should be based on a properly designed

"short passes" which anticipate the pattern of the mesh refinement.
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